
EZAsm

EZAsm ii

COLLABORATORS

TITLE :

EZAsm

ACTION NAME DATE SIGNATURE

WRITTEN BY January 17, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

EZAsm iii

Contents

1 EZAsm 1

1.1 EZAsm documentation . 1

1.2 DISCLAIMER . 2

1.3 New Features, Bug Fixes . 3

1.4 What is EZAsm? . 4

1.5 Setting Up EZAsm . 4

1.6 Addressing Modes . 6

1.7 Operand Legends . 7

1.8 Addition Subtraction . 7

1.9 Multiplication Division . 8

1.10 And OR Exclusive-OR . 9

1.11 Shift Left/Right . 9

1.12 Assignment . 10

1.13 If Else Syntax . 10

1.14 Compare . 11

1.15 Bit Test . 12

1.16 Statement Arguments . 12

1.17 Using Functions . 13

1.18 Use of PC Relative code . 16

1.19 Using Tag list functions . 16

1.20 Importing functions from .fd files . 18

1.21 Option switches . 19

1.22 Optimizations . 20

1.23 Statement Information . 22

1.24 Variable Declaration . 23

1.25 Argument Information . 24

1.26 General Information . 25

1.27 Converting C to EZAsm . 25

1.28 Errors . 27

1.29 Acknowledgments . 28

1.30 Contacting the author . 28

EZAsm 1 / 28

Chapter 1

EZAsm

1.1 EZAsm documentation

EZAsm

Version 1.9 May ’94
By Joe Siebenmann

DISCLAIMER
STATEMENTS

New features

What is EZAsm?

Addition Subtraction

Setting up EZAsm

Multiplication Division

Addressing modes

And OR Exclusive-OR

Using functions

Shift Left/Right

Tag list functions

Assignment

Importing functions

If Else Syntax

Option switches

EZAsm 2 / 28

Compare

Variable declaration

Bit Test

Statement arguments

Converting C to EZAsm

Operand Legends

Optimizations

PC Relative code

Statement information

Argument information

General information

Errors

Acknowledgments

Contacting the author

1.2 DISCLAIMER

You have the right to freely use, copy, and distribute
the files in this collection (A68k and Blink have their own
distribution policies) provided the following
conditions are met:

1. They are distributed together, and are not modified
in any way. Foreign language translations can be added.

2. They are not included in any package for profit
unless written consent from the author is obtained.
Inclusion in a PD series is OK as long as the
cost is REASONABLE.

------- NO LIABILITY FOR CONSEQUENTIAL DAMAGES -------

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DAMAGES
WHATSOEVER ARISING OUT OF THE USE OF OR INABILITY TO USE
THESE PROGRAMS.

EZAsm 3 / 28

1.3 New Features, Bug Fixes

Bug fixes:

1.8:

- Size arguments for "++" and "--" stopped working.

foo = Function() foo = Function()
foo != 0 Quit foo <op> <operand>

- In trying to optimize by eliminating the following "tst"
it could remove the 2nd statement by mistake.

- Problems using "MACRO", "ENDM" above your code.

New Features:

1.8:

o Function argument syntax is now much more relaxed.
You can now use: "Permit()", "OpenWindow(&NewWin)", etc..

o New optimizations using PC relative addressing.
A size decrease of over 11% was achieved on "scrwin".

o Better handling for allowing assembly statements to
come before EZAsm statements, and better detection of where
your code starts.

o Improved handling of paths for source and output files.

1.9:

o All 3.0 functions are supported, including the CD32 libraries
lowlevel and nonvolatile, also reqtools and powerpacker
libraries.

o Doc files are now in AmigaGuide format, viewable with
MultiView or standard text viewers.

o EZAsm is now more than 50% faster!

o To avoid possible problems with some assemblers, the leading "."
for labels, string constants etc. has been changed to "_".

o Comments are more flexible now, beginning at ANY column
using "*" or ";".

o Use of "=" is supported as an alternative to "EQU".

EZAsm 4 / 28

1.4 What is EZAsm?

EZAsm was written to make programming in 680X0 assembly
language MUCH easier! EZAsm combines 680X0 assembly language
with parts of C. The result is highly optimized code,
with almost HALF the development time!

A68k (by Charlie Gibbs) and Blink (from The Software Distillery)
are included, so you’ll have everything you need to start
producing executables. (except Commodore’s include files)

Here are some of its advantages:

o Your code is converted into the fastest possible
assembly statement(s), so you automatically write
"good" code.

o More structured. Compare and bit test statements can have
braces and "else" like C. Being able to use braces lets
you use assembly language in a whole new way!

o C-like Amiga function calls! Every 3.0 function in every
library is supported.

o Import functions from other libraries using ".fd" files.

o All needed libraries including resources, and those imported
from ".fd" files, are opened and closed automatically.

o Your code is much more readable, and easier to debug.
You can code nearly twice as fast, with fewer syntax errors.

o No more having to constantly look up which condition code to
use for compares, bit tests, or maximum numbers for
"moveq" or "addq" etc.

o You can freely mix assembly statements with "EZAsm statements".

You need to know a little about assembly language and
C operators before you dive right in. If you’re new to
68000 assembly language, I suggest looking at one of the
many available books on the subject. The source code
for "Mk", "scrwin" and "scrwintags" are included as examples.

1.5 Setting Up EZAsm

Create a directory, and copy these files into it:

EZAsm, A68k, Blink, Mk, ez.lib, nm, dat

EZAsm 5 / 28

You can either CD into your directory or take
advantage of the new path handling:

1. Add "assign EZASM: [path][YourEZAsmDir]".

2. Add EZASM: to your path: "path EZASM: add"
(Use "path" to check that it worked)

(Mk and EZAsm will first check to see if you’re
CD’d into the directory, then will try looking for
the ASSIGN)

Paths:

If a path to the source file is given, the output file
will go to same directory. If no path, EZAsm uses the
current directory for source and output files.

(Another good method is to create an ALIAS to execute
a file that loads everything into VD0:, SD0:, or RAD:,
CD into it, and work from there)

Recoverable ram disk fans! Check out "StatRam" (SD0:)
on Fred Fish #915. I got VD0: to work under 3.0,
but this is better!

Mk
Mk is a make-like program, written in EZAsm, that will
Execute() the necessary programs for you, creating an
executable file with a minimum of effort. It also
supports an optional include path for A68k, and support
for a ".mak" file. The source code is included.

(!! WShell users might need to rename Mk !!)

Usage:

Mk [-iPathToIncludes] [path]file

(where "file" is your source file, NO extension)

Execute()s these commands:

ezasm file.s
a68k [-iPathToIncludes] file.asm
blink FROM file.o LIB ez.lib TO file

.mak
For times when you need to supply more options for A68k or
Blink, or invoke other assemblers or linkers, Mk supports
a .mak file. Just create a file with the same name as your
source file, but with a ".mak" extension. The file should

EZAsm 6 / 28

contain the EZAsm, A68k, Blink or other commands, with any options
or switches you need, as if you were entering them from the CLI.
Any comments should begin with a non-alpha character.
If Mk finds the .mak file, it will Execute() those commands,
otherwise it will Execute() the standard commands.

Getting Started:

A good way to begin using EZAsm is to take your existing
code and gradually make these changes:

- Eliminate all your opening and closing of libraries,
and any "SECTION" statements, EZAsm takes care of all
that for you. For data, you might need to move your "END".

- Declare your variables.

- Start by replacing the statements that make up your Amiga
function calls with the simple C-style calls.

As you get used to the easier compares and other
"EZAsm statements" you can incorporate them into new, or other
sections of your code.

1.6 Addressing Modes

Operand Legends
Operand Type

Mode [A] [B] [C] [D] [E] [F]

Dn * * * - * -
An * - * - - -
(An) * * * * * *
(An)+ * * * * * *
-(An) * * * * * *
d16(An) * * * * * *
d8(An,Xn) * * * * * *
16 bit addr * * * * * *
32 bit addr * * * * * *
d16(PC) * - - - * *
d8(PC,Xn) * - - - * *
immediate * - - - * -

bd(An,Xn) * * * * * * 68020/68030
([bd,An],Xn,od) * * * * * * 68020/68030
([bd,An,Xn],od) * * * * * * 68020/68030
bd(PC,Xn) * - - - * * 68020/68030
([bd,PC],Xn,od) * - - - * * 68020/68030
([bd,PC,Xn],od) * - - - * * 68020/68030

EZAsm 7 / 28

declared variables:

"foo" becomes "foo(a5)" (d16(An))

1.7 Operand Legends

<1-8> 1 - 8
<q> -128 - 127
<n> any byte, word, or long size number

Dn d0 - d7
An a0 - a7

{B} byte data size not allowed for An operands

bd 32 bit displacement
od 32 bit outer displacement

Xn a0 - a7 d0 - d7

Options: Examples:

size: .w .l a2.w a0.l
scale: *1 *2 *4 *8 a1*2 a0.w*4 (68020/68030)

1.8 Addition Subtraction

OPERANDS SIZES
Addressing modes

Operand Legends
++

--

[C] <op> L,W,{B} *

+=
-=

Dn <op> [A] L,W,B

An <op> [A] L,W *

[D] <op> Dn L,W,B

[B] <op> <n> L,W,B

[C] <op> <1-8> L,W,{B} *

EZAsm 8 / 28

Examples:

Total ++
d1 += 10

Optional Args:

l, w, b

* When appropriate, these are optimized by making the size word
(.w) instead of long (.l) for "An" operands. It’s 4 cycles
shorter, and the upper two bytes are correctly handled!

1.9 Multiplication Division

OPERANDS SIZES
Addressing modes

Operand Legends

*=

Dn *= [E] W

Dn *= ## W *

/=

Dn /= [E] W

Examples:

d0 *= d1
d2 /= 2

Optional Args:

w,
s (signed divs/muls)

* (Improved!) This optimization results in code that’s larger then
"mulu" or "muls", but will execute much faster. Not all numbers
can be optimized. If the number doesn’t work, "mulu"
or "muls" will be used.

(where ## is a word or byte length number)

EZAsm 9 / 28

1.10 And OR Exclusive-OR

OPERANDS SIZES
Addressing modes

Operand Legends
&=

|=

Dn <op> [E] L,W,B

[B] <op> <n> L,W,B

[D] <op> Dn L,W,B

^=

[B] <op> Dn L,W,B

[B] <op> <n> L,W,B

Examples:

Mask &= %11010000
Flags |= $f0

Optional Args:

l, w, b

1.11 Shift Left/Right

OPERANDS SIZES
Addressing modes

Operand Legends
<<

>>

Dn <op> Dn L,W,B

Dn <op> 1-31 L,W,B *

[D] <op> 1 W

Examples:

d2 << d0
d1 >> 4

EZAsm 10 / 28

Optional Args:

l, w, b,
a = Preserves the sign bit by use of "asr" and "ext.l".

Use only with right shifts (">>").

* Normally you’re limited to shifting 1-8, or using a
data register to hold higher shift values. This
optimized version is faster, and saves using a data register!

1.12 Assignment

OPERANDS SIZES
Addressing modes

Operand Legends
=

[B] = [A] L,W,{B}

An = [A] L,W

Examples:

temp = Total
(a1)+ = 0 w

Optional Args:

l, w, b

1.13 If Else Syntax

Compare and Bit test statements use this syntax:

operand <op> operand label

operand <op> operand {
.
.

}

EZAsm 11 / 28

operand <op> operand {
.
.

} else {
.
.

}

Size arguments should be placed AFTER the label or brace

1.14 Compare

OPERANDS SIZES
Addressing modes

Brace syntax

Operand Legends
>=

<=
!=
>
<
=

Dn <op> [A] L,W,{B}

An <op> [A] L,W

[B] <op> <n> L,W,B

(An)+ <op> (An)+ L,W,B

Examples:

Total >= 100 Over

Buf != 0 {
FreeMem(Buf 100)

}

Optional Args:

l, w, b,
s (signed)

EZAsm 12 / 28

1.15 Bit Test

OPERANDS SIZES
Addressing modes

Brace syntax

Operand Legends
=

!=

Dn:0-31 <op> 0-1 L

Dn:Dn <op> 0-1 L

[F]:0-7 <op> 0-1 B

[F]:Dn <op> 0-1 B

Examples:

d1:0 != 1 EvenRtn

($bfe001):6 = 0 LMBDown

d2:d0 = 1 {
rts

}

Optional Args: (ignored)

Rules:

o No spaces inside first operand.

o Right operand can only be 0 or 1.

1.16 Statement Arguments

b forces operation to be byte

w " " " word

l " " " long

a preserves sign bit (>>)

s signed (*=, /=, compares)

EZAsm 13 / 28

(it’s OK to use multiple arguments ("w s" etc.))

(these are RESERVED and can’t be used as variables or labels
(unless you use upper case))

1.17 Using Functions

o All 3.0 functions are supported, including the CD32 libraries
lowlevel and nonvolatile, also powerpacker and reqtools libraries.
"OBSOLETE" functions are included for backward compatibility.
See "nm" for supported functions.

o All needed libraries including resources, and those imported
from ".fd" files, are opened and closed automatically, and their
bases are added to your variables. (resources don’t need to
be closed) (See also

XFAIL, LVER
)

All functions within these 3.0 libraries and resources
are supported:

amigaguide.library _AmigaGuideBase
asl.library _AslBase
battclock.resource _BattClockBase
battmem.resource _BattMemBase
bullet.library _BulletBase
card.resource _CardResource
ciaa.resource _CiaABase
ciab.resource _CiaBBase
commodities.library _CxBase
datatypes.library _DataTypesBase
diskfont.library _DiskfontBase
disk.resource _DiskBase
dos.library _DOSBase
exec.library
expansion.library _ExpansionBase
gadtools.library _GadToolsBase
graphics.library _GfxBase
icon.library _IconBase
iffparse.library _IFFParseBase
intuition.library _IntuitionBase
keymap.library _KeymapBase
layers.library _LayersBase
locale.library _LocaleBase
lowlevel.library _LowLevelBase
mathffp.library _MathBase
mathieeedoubbas.library _MathIeeeDoubBasBase
mathieeedoubtrans.library _MathIeeeDoubTransBase
mathieeesingbas.library _MathIeeeSingBasBase
mathieeesingtrans.library _MathIeeeSingTransBase
mathtrans.library _MathTransBase

EZAsm 14 / 28

misc.resource _MiscBase
nonvolatile.library _NVBase
potgo.resource _PotgoBase
powerpacker.library _PPBase
reqtools.library _ReqToolsBase
rexxsyslib.library _RexxSysBase
translator.library _TranslatorBase
utility.library _UtilityBase
workbench.library _WorkbenchBase

All functions for these .devices are supported:

console.device _ConsoleDevice
input.device _InputBase
ramdrive.device _RamDriveDevice
timer.device _TimerBase

You’re responsible for calling OpenDevice() and
loading the base to use these .device functions:

BYTE TimeRequest[40]
LONG _TimerBase

OpenDevice("timer.device" 0 &TimeRequest 0)
bne Exit

a0 = &TimeRequest
_TimerBase = 20(a0) ;TimeRequest->tr_node.io_Device

.

.

o The cia.resource functions AbleICR(), AddICRVector(),
RemICRVector(), and SetICR() have been changed to
simplify the OpenResource(). The functions are now
AbleICRA() and AbleICRB() etc. and open the corresponding
ciaa.resource or ciab.resource.

o The leading underscores of the bases are necessary so you can
use includes without your assembler complaining. Some library
bases are already defined in some ".i"s resulting in
"multiply defined symbol" errors.

AllocMem(100 #CLEAR_PUBLIC)
^
| space required

o Function argument syntax is now much more relaxed!
Arguments must be separated by a space or tab.

o Multi-line function arguments are supported. As with tag list

EZAsm 15 / 28

arguments, the closing parenthesis (")") shouldn’t be on a
separate line. You should have at least one argument before it.

a2 = ViewAddress()
d1 = Read("DF0:myfile" Buf BufLen)

o Address or data registers can be used for returns if
they’re more convenient. Return variables can be ANY size.
Variables used in function arguments must be LONG.

Arguments:

o You can pass registers to function arguments directly.
If the proper register is already loaded, just pass "*".

o You can also use these, and other addressing modes for function
arguments and returns: "(An)", "(An)+", "-(An)", "d16(An)" etc.

o EZAsm supports argument strings surrounded by double quotes.
Strings are automatically NULL terminated.
The following C character constants are supported:

\b backspace
\f form feed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\" double quote
\’ single quote
\nnn octal character value
\xnn hex character value

Examples:

"Hello, World!\n"

"\x1b[32mEZAsm 1.9\x1b[39m\n"

o Sometimes you have to "play around" with using "#", "&",
variables, constants etc.. Also taking into account if it’s
being pushed onto the stack. You might be giving it the
CONTENTS of a variable, when it needs its ADDRESS. (etc.)

o It keeps track of the current library base. As long as no user
labels, or close braces are hit, it will skip reloading
the base register for functions which use the same library base.

EZAsm 16 / 28

1.18 Use of PC Relative code

END

NewWin ds.w 0 ;align
dc.w 0,0,640,200
dc.b -1,-1
.
.

o PC relative addressing is now used, when appropriate,
to reference data labels.

The following are used with FUNCTION ARGUMENTS and STATEMENTS
when referencing declared variables and data labels:

Address of:

&NewWin
#NewWin

(These can go to an address or data register:
"move.l #NewWin,Dn", "lea NewWin(pc),An")

Contents of:

NewWin

The following directives will not appear in the output assembly
file, and can occur any number of times. PC relative
optimizations should be turned off when the data references
are beyond 32K of the current position.

NEAR
All data references after this will use PC relative
addressing. This is turned on by default at the start
of your code.

FAR
All data references after this will not use PC relative
addressing.

1.19 Using Tag list functions

OpenScreenTag(0
SA_Width 640
SA_Height Height
SA_Depth 2

EZAsm 17 / 28

SA_DetailPen -1
SA_BlockPen -1
SA_Type $f
SA_Quiet 1
SA_DisplayID $8000
TAG_END)

Tag list functions are supported. When using the
"varargs" version of a function (above), the tag list
arguments are built as data, and the function argument is
converted to a pointer to the data structure.

EZAsm relies on the following:

FunctionA() <- Pointer to tag list version
Function() <- "varargs" version

The following functions HAVE BEEN CHANGED for consistancy:

(was) (now)

_DOSBase:

System SystemA
[SystemTags] System

AllocDosObject AllocDosObjectA
[AllocDosObjectTags] AllocDosObject

CreateNewProc CreateNewProcA
[CreateNewProcTags] CreateNewProc

_AslBase:

AllocAslRequest AllocAslRequestA
[AllocAslRequestTags] AllocAslRequest

AslRequest AslRequestA
[AslRequestTags] AslRequest

_GfxBase:

ExtendFont ExtendFontA
[ExtendFontTags] ExtendFont

_IntuitionBase:

OpenWindowTagList OpenWindowTagA
[OpenWindowTags] OpenWindowTag

OpenScreenTagList OpenScreenTagA
[OpenScreenTags] OpenScreenTag

o It knows about every 3.0 tag ("SA_Height", "WA_Width" etc.)

EZAsm 18 / 28

and they’ll automatically be converted to their
equivalents ($80000024, $80000066), no includes are needed.
All the supported tags are listed in the file "nm"
below the function names.

o It’s important to use these tags! That’s how it differentiates
between ’regular’ and tag list function arguments.

o Tag lists MUST be terminated with "TAG_DONE", "TAG_END"
(with NO ’0’ tag data) or "TAG_MORE" (with a tag list address).

o Be sure to add an include when using tag data arguments like:
"TRUE", "FALSE", "CUSTOMSCREEN" etc.

o The closing parenthesis (")") shouldn’t be on a separate line.
You should have at least one argument before it. 8^(

o Variables used for tag data arguments can be ANY size, and are
correctly loaded automatically.

o When importing tag list functions from libraries and using
"unknown" tags, I’d recommend setting up a tag list data structure
like EZAsm does, use includes, and pass its address.

1.20 Importing functions from .fd files

Usage:

PROTO [path]LibraryName [path]FDName

Example:

PROTO req.library req.fd

Where PROTO is in upper case, begins at column 1, and
is placed ABOVE your variable declarations. The ".fd"
file is read, and all its functions, both "##public"
and "##private", become available for use. The
library base is added to your variables, and the
opening and closing of the library is handled
automatically.

To avoid any conflicts with other function names, these
are used first. Up to 10 ".fd" files can be used.

"PROTO" is most useful for importing functions from
PD libraries or new libraries from Commodore.
You can also fix a "built-in" function’s offset
or argument register(s).

Here’s an example:

EZAsm 19 / 28

##base _DOSBase
##bias 102
Examine()(D1,D2) ;(arguments within the first "()" are ignored)
##end

(the default bias is 30)

1.21 Option switches

These switches should be placed above your variable declarations,
in upper case, and should not begin in column one.

Using command line arguments:

Because the automatic opening of libraries will
corrupt A0 and D0, the following "switches" are provided:

ARGS A0 is loaded into the variable "Args" (automatically
created) and "clr.b -1(a0,d0.w)" is used to NULL terminate
the argument string. The length in D0 is lost.
(see Mk.s for an example of using "ARGS")

SAVEARGS
A0 and D0 are pushed onto the stack with "movem.l d0/a0,-(sp)".
You’re responsible for restoring and using them.

Other useful switches:

SAVEREGS
Pushes registers you request onto the stack at the start of
your code, and restores them before exiting.

Usage: SAVEREGS register list

Example: SAVEREGS d2-d4/a0-a3/a6

Where register list contains no spaces, and will generate
these statements: "movem.l d2-d4/a0-a3/a6,-(sp)"

"movem.l (sp)+,d2-d4/a0-a3/a6"

OPT4 Uses "$4.w" instead of "$4" to load ExecBase, and
"lea n.w,An", "pea n.w" when appropriate.
(If you don’t use A68k, I’d recommend using this.
A68k makes these optimizations, but doesn’t like the
"$4.w" syntax)

EXT Allows you to specify the extension of the output assembly
file. The default is ".asm". Example: EXT .a

NOEXTRAS

EZAsm 20 / 28

Removes the loop clearing the stack frame, and
"moveq #0,d0", before the "rts" at the end of the code.

XFAIL Prevents your program from exiting if OpenLibrary(), for
the specified library, fails. Useful when trying to open
another library if the first attempt fails.

Example: XFAIL reqtools.library

LVER Allows you to specify a version number for an OpenLibrary().

Example: LVER intuition.library 36

1.22 Optimizations

In addition to the many "standard" optimizations performed
on statements, the following are also performed:

STATEMENT BECOMES NOTE

An = 0 sub.l An,An

[B] = 0 clr [B] 1

(compares)

[B] < 0
[B] >= 0 5

[B] = 0
[B] != 0 tst [B] 6

bxx label

[B] += <q>
[B] -= <q>

[B] &= <q>
[B] |= <q>
[B] ^= <q>

[B] = <q> moveq <q>,d7 2
[opr].l d7,[B]

(compares)

Dn <op> <q> moveq <q>,d7 2
cmp.l d7,dn
bxx label

EZAsm 21 / 28

An <op> <q> moveq <q>,d7 2
cmpa.l d7,an
bxx label

An += <i> lea i(An),An
An -= <i> lea -i(An),An 3, 2

An = <n> lea n,An 4, 2

<i> maximum: -= 32768 += 32767

Notes:

1 For byte and word sizes the code size is smaller, for long
it’s smaller and faster than "move #0,[B]".

2 Only apply to long sized operations.

3 (1-8 handled by "addq", "subq" (see note in Addition Subtraction))

4 (0 handled by "sub.l An,An")

5 Taken as signed.

6 In some cases "tst" is eliminated, or D7 is loaded, see below.

More optimizations:

Buf != 0 {
FreeMem(Buf 100)

}

(standard) (improved)

tst.l Buf(a5) move.l Buf(a5),d7
beq .l2 beq .l2
movea.l $4,a6 movea.l $4,a6
movea.l Buf(a5),a1 movea.l d7,a1

. .

. .

o Instead of doing a "tst", the variable is loaded into D7
(flags set, and same size and number of cycles) where it can
be utilized by a following function call. In this case it
loads D7 into A1, saving 2 bytes, and taking only 4 cycles
instead of 13.

EZAsm 22 / 28

Fhandle = Open("df0:myfile" 1005)

Fhandle = 0 {
.
.

}

. .

. .
move.l d0,Fhandle(a5) move.l d0,Fhandle(a5)

tst.l Fhandle(a5) bne .l5
bne .l5

o The flags are set by the "move", so the "tst" instruction
can be eliminated, saving 4 bytes and 9 cycles.
(a label before the "Fhandle = 0 {" statement disables this)
Several other optimizations of this type are also supported.

foo > 10 {
.
.
[jmp statement]

} else {
.
.

}

o In cases where a [jmp statement] ("jmp", "bra", "bra.s",
"rts", "rte", "rtd" or "rtr") is immediately above
the "else" (above), normal label generation (etc.) for
jumping past "else" is eliminated.

1.23 Statement Information

o Statements can be indented as you like. Operands, operator,
and arguments must be separated by at least one space or tab.

o Braces can be nested up to 30 deep.

o Comments can begin in ANY column with "*" or ";", or after
statements (separated from last argument or operand) using ";".
Most comments are transferred to the output file.

o Operands supported: @141 (octal), $61 (hex), %1100001 (binary),
’a’ (ASCII), 97 (decimal). ASCII strings in operands can
contain a maximum of 4 characters.
(no quotes within quotes permitted)

EZAsm 23 / 28

o To make labels and symbols as compatible as possible, they aren’t
checked for illegal characters. Typically the first character
must be a letter, underscore "_", or a period ".".
The rest of the characters can be any of these plus 0-9.

o Labels and symbols are limited to a length of 127.
(Check your assembler to find what length they’re
significant to (usually around 30))

o Labels that don’t begin at column 1 must be followed immediately
with ":", otherwise, use of ":" is optional.

o Temporary labels of the form n$, where n consists of decimal
digit(s), are supported. These labels are only in effect till
the next non-temporary label is encountered. (be careful
of "hidden" labels generated by braces)

o "moveq #0,d0", "rts" is automatically inserted for you in the
closing block of code. (See also

NOEXTRAS
)

o D7 is used as a scratch register for many optimizations, so be
careful if you use it.

o Labels and constants that are generated are in the range:

"_l0" to "_ln" Program labels
"_c0" to "_cn" String constants
"_t0" to "_tn" Tag list labels

Try to avoid accidentally using them.

o "SP", "PC", "CCR", "SR" & "USP" (upper or lower case)
are supported, but you must ensure it’s used correctly.

IMPORTANT! :

Don’t use register A5! It holds the base address of the
stack frame used for variable storage.

1.24 Variable Declaration

LONG foo bar
WORD DMASave
BYTE Sw RegSave[32] ViewPort[40]

o "var[n]" reserves n consecutive blocks of given size.
This is a convenient way of allocating a chunk
of the stack frame for structures, register save areas etc..
These are aligned on 8 byte boundaries similar to AllocMem().

EZAsm 24 / 28

Be sure to use "&" when appropriate, otherwise your data will
go to $0, resulting in a crash.

o Variables must be separated by at least one space, or tab.

o Word alignment is assured for all variables.

o Declarations must occur JUST BEFORE your program code,
and begin at column 1, with LONG, WORD, or BYTE in upper case.

o EZAsm uses "link" to allocate a stack frame for storage.
The maximum size of this space is 32K or greater, depending
on which processor you’re using. Since this space
contains "garbage", code is added to clear it out before use.
The frame size is rounded up to the nearest LONG.

(Sometimes variables are "adjusted" for proper loading, and
"-2(a5)" or other displacement may appear in the output file
instead of "foo(a5)" or other variable name you might be expecting.)

1.25 Argument Information

o It’s now much more forgiving about your placement of
assembler directives, and smarter about detecting where
your code starts. If you experience any problems
(it hit an assembly directive it didn’t recognize)
try placing your data statements below "END",
and "equ", "xref" and "xdef" type directives above your
variable declarations, or below "END".
(In the final .asm file "END" will be adjusted)

o Instruction size: IN MOST CASES YOU WON’T NEED
A SIZE ARGUMENT. It knows the size of your variables,
address and data registers, and is smart enough to know
what size to use. You’ll need to specify a size if
the data is smaller than the instruction size you want,
(d1 = $20 w) or it can’t know the size of the operands
((a2)+ = 3(a0) l).

Caution: Be aware that if you load small variables into
larger ones, the upper bytes aren’t cleared and
may garbage your result. Always initialize those
variables, or restrict the size of further
operations to "b" or "w".

o Try not to overuse the size arguments. Once you get confident
it’s sizing your instructions correctly (by checking the
.asm file) you’ll find you can eliminate their use almost
entirely. By needlessly restricting a long operation to
a word, or byte, you can miss the "quick" optimization.

o Since "(a1)" refers to the CONTENTS of the byte, word, or long
that A1 points to, "($dff180)" is used in a similar way.
(decimal addr’s are also valid: "(14675968)")

EZAsm 25 / 28

o Numbers are "converted" for you. ($f2 -> #$f2 37 -> #37)
Operands it doesn’t recognize, like "wd_UserPort(a2)",
are output "as is".

1.26 General Information

o If at any time you’re unsure of what a statement is being
output as, or want to check something out, just look
at the output .asm file. Well placed blank lines in your
source code can enhance its readability.

o For best viewing of the output file, set your tabs to 8 spaces.

o I think it’s a good idea to get away from using include files.
Most assembly source files I see do this.
It speeds up the assembler tremendously, and saves
endless wear and tear on your drives.

1.27 Converting C to EZAsm

It’s fairly easy to convert any C code into
EZAsm if you follow these guidelines:

Allocating structures:

Whenever you see "struct VSprite SpriteA" etc.,
you need to either allocate some memory for the
structure, or set up your own:

BYTE SpriteA[<structure size>]

---------- or ----------------

CLEAR_PUBLIC equ $10001

LONG SpriteA

SpriteA = AllocMem(<structure size> #CLEAR_PUBLIC)
beq Exit

---------- or ----------------

SpriteA ds.w 0 ;align
dc.l 0 ;NextVSprite

EZAsm 26 / 28

dc.l 0 ;PrevVSprite
.
.

(you can look-up the size of the structure in the
"StructOffsets" file, or use "#vs_SIZEOF" etc. and
let the assembler get its size from the includes)

Some functions will create the structures for you
and return a pointer to it (OpenWindow(), OpenScreen()
etc.) just declare a LONG, and load the returned pointer:

LONG Window

Window = OpenWindow(&NewWindow)
beq Exit

Accessing structure elements:

Often you’ll need to get at data inside structures.
First load the "structure pointer" into an address
register, then use the offset of the structure element.
Here’s a typical example:

Move(Window->RPort, 20, 20); /* C */

a0 = Window
Move(wd_RPort(a0) 20 20)

---- or ----

a0 = Window
Move(50(a0) 20 20)

(add an include to your source, and the assembler
will look-up "wd_RPort" and substitute its offset or,
even better, use "50(a0)")

!!! See the included file StructOffsets !!!

Be sure to convert BPTRs (left shift ’um 2 bits)
before using them:

a3 = _DOSBase

Forbid()

a3 = 34(a3) ;dl_Root
a3 = 24(a3) ;rn_Info

EZAsm 27 / 28

add.l a3,a3 ;convert BPTR
add.l a3,a3

.

.

1.28 Errors

"Illegal argument"

The argument found was not valid for the operator. See
the list of "Optional Args" for the operator. It must
be lower case, and be separated from the operands
by at least a space or a tab.

"Illegal operand"

One, or both, of the operands are: not valid for the operator,
have an invalid number, or byte size was specified for an
"An" operand ({B}). In most cases it’s looking for "Dn" or "An"
as an operand. (look under "OPERANDS" for a valid combination)

"Illegal size"

The size argument you specified is not valid for the operator.
Check "SIZES" for valid size arguments.

"Needs size argument"

It doesn’t have enough size information about the operands to
calculate an instruction size.
You need to add an l, w, or b size argument.

"Label not found"

No matching label was found.

"Brace mismatch"

Checks are made when a closing brace ("}") is hit, and when "END"
is hit. If the brace stack is "messed up" at that time, an error
is given. If "}" is shown, look from there up. Both "}" and "END"
may appear. If just "END", look for a "{" or "} else {" without a
matching "}".

"Function not found"

No function matching your function name was found. Check case and
spelling of function name, and be sure there isn’t a space before
the "(". Check the list of supported function names in the
file "nm".

"Function argument count incorrect"

Check the number of arguments you used for the function. Too many

EZAsm 28 / 28

or not enough were used. For tag lists, don’t use the "A" version
of a function with "varargs". With string arguments, check for a
missing ’"’. Also look for a missing end ")".

(EZAsm doesn’t do much checking of normal assembly statements.
A68k and Blink will catch any problems missed by EZAsm and bring
them to your attention)

1.29 Acknowledgments

Thanks to the following people who have helped to make
EZAsm better:

Martin Combs, for all the testing, bug reports,
ez.lib improvements and suggestions.

Wayne Lutz, for the 3.0 info.

Andreas Ackermann, for the suggestions, bug reports,
and the PC relative optimization idea.

And others, who sent bug reports and suggestions.

1.30 Contacting the author

Try using EZAsm, I don’t think you’ll want to go back to
"ordinary" assembly language programming. 8^)

Why isn’t EZAsm shareware? I don’t think you can make much
money with shareware. I’d like to get EZAsm into the hands
of as many interested people as possible because I believe
it’ll really make a difference. If you have any suggestions
for improvements, found bugs, or just want to say "hello",
please write, I’d like to hear from you!

Enjoy!

You can reach me at:

Joe Siebenmann
2204 Pimmit Run Lane Apt 1
Falls Church, VA 22043
(USA)

(703) 893-2579

	EZAsm
	EZAsm documentation
	 DISCLAIMER
	 New Features, Bug Fixes
	What is EZAsm?
	Setting Up EZAsm
	Addressing Modes
	 Operand Legends
	 Addition Subtraction
	 Multiplication Division
	 And OR Exclusive-OR
	 Shift Left/Right
	 Assignment
	 If Else Syntax
	 Compare
	 Bit Test
	 Statement Arguments
	 Using Functions
	 Use of PC Relative code
	 Using Tag list functions
	 Importing functions from .fd files
	 Option switches
	 Optimizations
	 Statement Information
	 Variable Declaration
	 Argument Information
	 General Information
	 Converting C to EZAsm
	 Errors
	 Acknowledgments
	 Contacting the author

